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ON THE PROPAGATION OF LONG-WAVE PERTURBATIONS

IN A TWO-LAYER FREE-BOUNDARY ROTATIONAL FLUID

UDC 532.591+517.948A. A. Chesnokov

A mathematical model for the propagation of long-wave perturbations in a free-boundary shear flow
of an ideal stratified two-layer fluid is considered. The characteristic equation defining the velocity of
perturbation propagation in the fluid is obtained and studied. The necessary hyperbolicity conditions
for the equations of motion are formulated for flows with a monotonic velocity profile over depth,
and the characteristic form of the system is calculated. It is shown that the problem of deriving
the sufficient hyperbolicity conditions is equivalent to solving a system of singular integral equations.
The limiting cases of weak and strong stratification are studied. For these models, the necessary
and sufficient hyperbolicity conditions are formulated, and the equations of motion are reduced to the
Riemann integral invariants conserved along the characteristics.
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Introduction. The modeling of nonlinear wave motions on the surface of a narrow fluid layer is of interest
for both basic research and applications in oceanology and meteorology. This topic has long been developed and has
been the subject of extensive research [1–4]. The study of the dynamics of a stratified fluid with piecewise-constant
density has applications to problems of oceanology and research into the stratified (separated into horizontal layers
with nearly uniform density) structure of the upper ocean layer [5]. An important feature of such motions is the
development of internal waves due to momentum transfer from one layer to another. Ovsyannikov [6] developed and
studied models for the potential wave motions of a two-layer fluid in the asymptotic shallow-water approximation.
The new theoretical method for analyzing integrodifferential equations proposed by Teshukov [7] allows the study of
more complex models of two-layer fluids taking into account the rotational (shear) nature of the motion. A number
of results for the two-layer model of rotational shallow water with a free boundary and with a rigid boundary were
obtained in [8, 9].

1. Derivation of Mathematical Model. The plane-parallel free-boundary flow of an ideal incompressible
two-layer heavy fluid above an even bottom is described by the Euler equations with the appropriate boundary and
initial conditions:

uit + uiuix + viuiy + ρ−1
i pix = 0, ε2(vit + uivix + viviy) + ρ−1

i piy = −g,

uix + viy = 0, h1t + u1(t, x, h1)h1x = v1(t, x, h1), v1(t, x, 0) = 0,

h1t + u2(t, x, h1)h1x = v2(t, x, h1), (1)

(h1 + h2)t + u2(t, x, h1 + h2)(h1 + h2)x = v2(t, x, h1 + h2),

ui(0, x, y) = ui0(x, y), vi(0, x, y) = vi0(x, y), hi(0, x) = hi0(x) (i = 1, 2).

The subscripts i = 1 and 2 correspond to the hydrodynamic quantities in the lower and upper layers of the
fluid, respectively (Fig. 1). The variables u∗i = (aH0)1/2ui, v∗i = (aH0)1/2H0L

−1
0 vi, ρ∗i = R0ρi, p∗i = R0aH0pi,
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t∗ = L0(aH0)−1/2t, x∗ = L0x, and y∗ = H0y are the dimensional velocity components, density, pressure, time, and
Cartesian coordinates, respectively; ui, vi, ρi, pi, t, x, and y are their corresponding nondimensional quantities. The
parameters L0 and H0 determine the characteristic horizontal and vertical scales; the parameter R0 has the density
dimension, a is the acceleration; g is the nondimensional acceleration due to gravity; and h1(t, x) and h2(t, x) are
the depths of the layers with densities ρ1 and ρ2 (ρ1 > ρ2).

In the long-wave approximation, the dimensionless parameter ε = H0/L0 is considered small. Neglecting
terms of order ε2 in Eqs. (1), we obtain the following expressions for the hydrostatic pressure distribution:

p1 = gρ1(h1 − y) + gρ2h2 + p0 (0 6 y 6 h1),

p2 = gρ2(h1 + h2 − y) + p0 (h1 6 y 6 h1 + h2).
(2)

Integration of the continuity equation subject to the boundary conditions gives the following expressions for the
vertical velocity component in the layers:

v1 = −
y∫

0

u1x(t, x, y′) dy′, v2 = −
y∫

h1

u2x(t, x, y′) dy′ + h1t + u2(t, x, h1)h1x;

system (1) for ε = 0 takes the form

u1t + u1u1x + v1u1y + gh1x + grh2x = 0, h1t +
( h1∫

0

u1 dy
)

x
= 0,

u2t + u2u2x + v2u2y + g(h1x + h2x) = 0, h2t +
( h1+h2∫

h1

u2 dy
)

x
= 0

(3)

[r = ρ2/ρ1; the expressions for vi(t, x, y) are given above and the initial data are the same]. It should be noted
that in the approximation considered, the vorticity in the layer is proportional to uiy, and in the case of no velocity
shear over the depth, system (3) reduces to the well-known equations of two-layer shallow water [6]. We consider
flows with a monotonic velocity profile over the depth. For definiteness, let uiy > 0 and u1 < u2.

The characteristic properties of the two-layer shallow-water equations for shear flows (3) are conveniently
analyzed in a semi-Lagrangian coordinate system using Teshukov’s generalization [4, 7] of the characteristic and
hyperbolicity concepts for systems with operator coefficients. Conversion to the semi-Lagrangian variables x and λ
(0 6 λ 6 1) is performed by the substitution of variables [10]

y =

{
Φ1(t, x, λ), if 0 6 y 6 h1,

h1(t, x) + Φ2(t, x, λ), if h1 < y 6 h1 + h2.
(4)

The functions Φi(t, x, λ) are the solutions of the following Cauchy problems:

Φ1t + u1(t, x,Φ1)Φ1x = v1(t, x,Φ1), Φ1|t=0 = λh1(0, x);

(h1 + Φ2)t + u2(t, x, h1 + Φ2)(h1 + Φ2)x = v2(t, x, h1 + Φ2), (h1 + Φ2)|t=0 = h1(0, x) + λh2(0, x).

The substitution is inversible if Φiλ 6= 0 (we set Φiλ > 0).
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The functions ui(t, x, λ) and Hi(t, x, λ) = Φiλ are obtained by solving the integrodifferential equations

u1t + u1u1x + g

1∫
0

H1x dλ+ gr

1∫
0

H2x dλ = 0, H1t +H1u1x + u1H1x = 0,

u2t + u2u2x + g

1∫
0

H1x dλ+ g

1∫
0

H2x dλ = 0, H2t +H2u2x + u2H2x = 0

(5)

subject to the initial data ui(0, x, λ) = u0i(x, λ) and Hi(0, x, λ) = H0i(x, λ).
Once the functions ui(t, x, λ) and Hi(t, x, λ) are found from the solution of Eqs. (5), the formulas Φiλ = Hi

and Φi(t, x, 0) = 0 allow one to find Φi and the depth of layers hi = Φi(t, x, 1). The pressure is determined from
formulas (2) and (4), and the vertical velocity components are obtained from the expressions for vi. Next, we find
the hyperbolicity conditions of the equations of two-layer rotational shallow water (5).

2. Characteristic Properties of Eqs. (5). System (5) is written as

Ut +AUx = 0, (6)

where U = (u1,H1, u2,H2)t is the desired vector;

A =



u1 g

1∫
0

. . . dλ 0 gr

1∫
0

. . . dλ

H1 u1 0 0

0 g

1∫
0

. . . dλ u2 g

1∫
0

. . . dλ

0 0 H2 u2


is a matrix with operator coefficients.

According to [7], the characteristic curve of system (6) is defined by the differential equation x′(t) = k(t, x),
where the rate of propagation of the characteristic k is an eigenvalue of the problem

(F , (A− kI)ϕ) = 0. (7)

The solution of Eq. (7) for the vector functional F = (F1, F2, F3, F4) is sought in the class of locally integrable or
generalized functions. The functional F acts on functions of the variable λ (t and x are treated as parameters) and
I is an identical mapping. The action of the functional F on Eq. (6) yields the characteristic relation

(F ,Ut + kUx) = 0. (8)

System (6) is a generalized-hyperbolic [7] if all eigenvalues of k are real and the set of relations on the characteris-
tics (8) is equivalent to Eqs. (6) (i.e., the system of eigenfunctionals is complete in the space considered).

Taking into account the independence of the components of the trial vector function ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)t,
from Eqs. (7) we obtain the equalities

(F1, (u1 − k)ϕ1) + (F2,H1ϕ1) = 0, g

1∫
0

ϕ2 dλ(F1, 1) + (F2, (u1 − k)ϕ2) + g

1∫
0

ϕ2 dλ(F3, 1) = 0,

(F3, (u2 − k)ϕ3) + (F4,H2ϕ3) = 0, gr

1∫
0

ϕ4 dλ(F1, 1) + g

1∫
0

ϕ4 dλ(F3, 1) + (F4, (u2 − k)ϕ4) = 0.

(9)

Let us consider the set of numbers k belonging to the complex plane, except for the segments [u10, u11] and [u20, u21],
where ui0 = ui(t, x, 0) and ui1 = ui(t, x, 1). From system (9) it follows that

(F1, ψ1) = −(F2, (u1 − k)−1H1ψ1), (F3, ψ3) = −(F4, (u2 − k)−1H2ψ3), (10)

where ψ1,2 = (u1−k)ϕ1,2 and ψ3,4 = (u2−k)ϕ3,4. Therefore, the action of the components F2 and F4 of the vector
functional F is written as
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(F2, ψ2) = g[(F2, (u1 − k)−1H1) + (F4, (u2 − k)−1H2)]

1∫
0

(u1 − k)−1ψ2 dλ,

(F4, ψ4) = g[r(F2, (u2 − k)−1H1) + (F4, (u2 − k)−1H2)]

1∫
0

(u1 − k)−1ψ4 dλ.

(11)

Setting ψ2 = (u1 − k)−1H1 and ψ4 = (u2 − k)−1H2 in formulas (11) and assuming zero value for the corresponding
determinant of the system homogeneous in (F2, (u1− k)−1H1) and (F4, (u2− k)−1H2), we obtain the characteristic
equation

χ(k) = 1− g
1∫

0

H1 dλ

(u1 − k)2
− g

1∫
0

H2 dλ

(u2 − k)2
+ g2µ

1∫
0

H1 dλ

(u1 − k)2

1∫
0

H2 dλ

(u2 − k)2
= 0, (12)

where µ = 1− r (0 < µ < 1).
As shown in [6], in the irrotational case, the two-layer shallow-water equation are hyperbolic for the solution

considered if the characteristic equation have four real roots. In this case, therefore, the most natural situation is
the one where for the examined solution of the integrodifferential system (5) there are also four real characteristic
roots ki. In view of the complexity and nonlinearity of Eq. (12), it is conveniently analyzed using the geometrical
interpretation proposed in [6] for the averaged model. We designate

1
p2(k)

= g

1∫
0

H1 dλ

(u1 − k)2
,

1
q2(k)

= g

1∫
0

H2 dλ

(u2 − k)2
(13)

[the signs of the quantities p(k) and q(k) coincide with the signs of the quantities u1 − k and u2 − k, respectively;
k ∈ (−∞, u10) ∪ (u11, u20) ∪ (u21,∞)]. Then, Eqs. (12) is written as

(p2 − 1)(q2 − 1) = r. (14)

On the plane of the dimensionless variables (p, q), Eq. (14) is the equation of a fourth-order curve with four symmetry
axis (dashed curve in Fig. 2). The number of the real roots of Eq. (12) is determined by the number of intersections
of the curve (14) with the parametrically defined discontinuous curve (13) (solid curve in Fig. 2). In the irrotational
case, formulas (13) define a straight line on the plane (p, q). The number of real solutions of Eq. (12) is conveniently
determined with the use of the quantities
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p1 = −
(
g

1∫
0

H1 dλ

(u1 − u21)2
)−1/2

, p2 = −
(
g

1∫
0

H1 dλ

(u1 − u20)2
)−1/2

,

q1 =
(
g

1∫
0

H2 dλ

(u2 − u10)2
)−1/2

, q2 =
(
g

1∫
0

H2 dλ

(u2 − u11)2
)−1/2

.

We note that p1 < p2 < 0, 0 < q2 < q1, and the parametrically defined curve p = p(k), q = q(k) increases
monotonically on the segments (−∞, u10), (u11, u20), and (u21,∞). We formulate the sufficient conditions for the
existence of four real roots of Eq. (12).

If for a given solution ui, Hi, one of the following conditions is satisfied:

1) q1 <
√
µ, p1 > −

√
µ;

2) q2 >
√
µ, p1 > −

√
µ;

3) q1 <
√
µ, p2 < −

√
µ;

4) q2 >
√
µ, p2 < −

√
µ, p2(k∗) + q2(k∗) 6 µ,

5) p2(k∗) > 1 +
√
r, q2(k∗) > 1 +

√
r (k∗ = (u20 + u11)/2),

(15)

then Eq. (12) has four real roots.
Each of conditions in (15) guarantees the existence of four points of intersection of curves (13) and (14) that

correspond to the real roots of the characteristic equation (12). Figure 2a corresponds to condition 1, and Fig. 2b
corresponds to condition 5. If condition 4 or 5 is satisfied, the following order of the characteristic roots takes place:
k1 < u1 < k2 < k3 < u2 < k4. For condition 1, the inequalities k1 < k2 < u1 < u2 < k3 < k4 are valid; if condition
2 (or 3) is satisfied, there is one root on the segment (u11, u20), one (or two) root(s) on the segment (−∞, u10), and
two (or one) root on the segment (u21,∞).

In the case of potential flows, where the characteristic equation is a fourth-order polynomial, the use of the
geometrical interpretation given above is sufficient to elucidate the type of equations. For rotational flows, Eq. (12),
which defines the characteristic roots, is not a polynomial and the conditions for the absence of complex roots are
more complex.

Let us define the complex functions χi(z) by

χi(z) =
1

ωi1(ui1 − z)
− 1
ωi0(ui0 − z)

−
1∫

0

∂

∂ν

( 1
ω′i

) dν

u′i − z
,

where ωi = uiλ/Hi and u′i = ui(t, x, ν). Then, the function χ(z) is written as

χ(z) = 1 + gχ1(z) + gχ2(z) + g2µχ1(z)χ2(z).

The conditions for the absence of complex roots of Eq. (12) are formulated in terms of the limiting values of the
function χ(z) from the upper and lower half-planes on the real axis.

Lemma 1. For the solution ui(t, x, λ), Hi(t, x, λ), Eq. (12) does not have complex roots if the condition

∆arg(χ+(u)/χ−(u)) = 2π(n− 4) (χ± 6= 0) (16)

is satisfied (the argument increment is calculated for u varied from u10 to u11 and from u20 to u21; n is the number
of real zeroes of the function χ).

Lemma 1 is proved by applying the argument principle to the analytic function χ(z), as was done in [11] for
the barotropic single-layer model.

In [8], an n-layer model was considered and a characteristic equation was derived, which, for n = 2, coincides
with Eq. (12). The same paper gives some conditions for the existence of four real roots for the two-layer model
in terms of the roots of auxiliary functions of the form 1 + µgχi and 1 + (1 +

√
r)gχi. There are two significant

differences between the conditions given in [8] and conditions in (15) proposed in the present paper. The cases
where on the segment (u11, u20) there is one characteristic root but the total number of real roots is four [which
corresponds to condition 3 or 4 in (15)] are not considered in [8]. For the case where on the segment (u11, u20)
there are two roots but the total number of roots is equal to four, only one condition [the analog of condition 5
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corresponding to large values of the Froude number] is given. The other situation where on the solution considered
there are four roots (12), two of which are on the segment (u11, u20) [condition 4 in (15)] is not considered in [8].

Eigenfunctionals. Using formulas (10) and (11), it is easy to find eigenfunctionals that correspond to the
roots k = ki of the characteristic equations (12):

(F i,ϕ(λ)) = −(1− γi
2)

( 1∫
0

H1ϕ1 dλ

(u1 − ki)2
−

1∫
0

ϕ2 dλ

(u1 − ki)2
)
− rγi

1

( 1∫
0

H2ϕ3 dλ

u2 − ki
−

1∫
0

ϕ4 dλ

u2 − ki

)
,

γi
j = g

1∫
0

Hj dν

(uj − ki)2
(j = 1, 2)

[by virtue of (12), the equality 1− γi
1 − γi

2 + µγi
1γ

i
2 = 0 is valid].

Let us show that problem (7) has nontrivial solutions if k ∈ [u10, u12]∪ [u20, u21], i.e., if there is a continuous
characteristic spectrum consisting of two segments of the real axis. Let k = u1(t, x, λ). In this case, system (9)
becomes

(F1, (u′1 − u1)ϕ′1) + (F2,H
′
1ϕ

′
1) = 0, g

1∫
0

ϕ2 dλ(F1, 1) + (F2, (u′1 − u1)ϕ′2) + g

1∫
0

ϕ2 dλ(F3, 1) = 0,

(F3, (u′2 − u1)ϕ′3) + (F4,H
′
2ϕ

′
3) = 0, gr

1∫
0

ϕ4 dλ(F1, 1) + g

1∫
0

ϕ4 dλ(F3, 1) + (F4, (u′2 − u1)ϕ′4) = 0.

(17)

Here the functionals act over the variable ν; the notation f ′ = f(t, x, ν), f = f(t, x, λ) is used for brevity. Since
Hi 6= 0, the equalities

(F2, ψ
′) = −(F1, (u′1 − u1)H ′−1

1 ψ′), (F4, ψ
′) = −(F3, (u′2 − u1)H ′−1

2 ψ′)

hold and system (17) reduces to the equations

g

1∫
0

ϕ2 dλ(F1, 1) + g

1∫
0

ϕ2 dλ(F3, 1)− (F1, (u′1 − u1)2H ′−1
1 ϕ′2) = 0,

gr

1∫
0

ϕ4 dλ(F1, 1) + g

1∫
0

ϕ4 dλ(F3, 1)− (F3, (u′2 − u1)2H ′−1
2 ϕ′4) = 0.

This system has two different solutions F 1λ and F 2λ:

(F 1λ,ϕ(ν)) = (1− αµ)g

1∫
0

H ′
1(ϕ

′
1 − ϕ1) dν

(u′1 − u1)2
+ (1− α)ϕ1(λ)

− (1− αµ)g

1∫
0

ϕ′2 dν

u′1 − u1
+ rg

1∫
0

H ′
2ϕ

′
3 dν

(u′2 − u1)2
− rg

1∫
0

ϕ′4 dν

u′2 − u1
,

(F 2λ,ϕ(ν)) = −ϕ1λ + u1λH
−1
1 ϕ2(λ).

Similarly, we find the eigenfunctionals F 3λ and F 4λ corresponding to the values k = u2(t, x, λ):

(F 3λ,ϕ(ν)) = g

1∫
0

H ′
1ϕ

′
1 dν

(u′1 − u2)2
−g

1∫
0

ϕ′2 dν

(u′1 − u2)2
+(1−β)ϕ3(λ)+(1−βµ)g

1∫
0

H ′
2(ϕ

′
3 − ϕ3) dν
u′2 − u2

−(1−βµ)g

1∫
0

ϕ′4 dν

u′2 − u2
,

(F 4λ,ϕ(ν)) = −ϕ3λ + u2λH
−1
2 ϕ4(λ).
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Here the following notation was used:

α = g

1∫
0

H ′
2 dν

(u′2 − u1)2
, β = g

1∫
0

H ′
1 dν

(u′1 − u2)2
.

Characteristic Relations. Acting on system (5) by the eigenfunctionals F iλ and F i, we obtain the following
characteristic relations:

ω1t + u1ω1x = 0, ω2t + u2ω2x = 0,

1− αµ
rg

( ∂

∂t
+ u1

∂

∂x

)(
u1 − g

1∫
0

H ′
1 dν

u′1 − u1

)
−

( ∂

∂t
+ u1

∂

∂x

) 1∫
0

H ′
2 dν

u′2 − u1
= 0,

(1− βµ)
( ∂

∂t
+ u2

∂

∂x

)(
u2 − g

1∫
0

H ′
2 dν

u′2 − u2

)
− r

( ∂

∂t
+ u2

∂

∂x

)
g

1∫
0

H ′
2 dν

u′1 − u2
+ µβ

( ∂

∂t
+ u2

∂

∂x

)
u2 = 0, (18)

1− γµ
rg

( ∂

∂t
+ ki

∂

∂x

)(
ki − g

1∫
0

H1 dλ

u1 − ki

)
−

( ∂

∂t
+ ki

∂

∂x

) 1∫
0

H2 dλ

u2 − ki
= 0.

Next, we assume that for the solution considered, one of conditions in (15) is satisfied [i.e., Eq. (12) has
four real roots] and the condition of no complex characteristics (16) is satisfied. We consider the problem of the
completeness of the system of eigenfunctionals F iλ and F i (i = 1, 2, 3, 4). To prove that Eqs. (5) are equivalent
to the characteristic relations (18), it is necessary to show that the equalities (F iλ,S) = 0 and (F i,S) = 0 are
satisfied if and only if the vector function S(λ) = (S1, S2, S3, S4) is identically equal to zero.

From the equations (F 2λ,S) = 0 and (F 4λ,S) = 0 it follows that S2 = ω−1
1 S1λ and S4 = ω−1

2 S3λ. Bearing
this in mind, we write the results of action of the functionals F 1λ and F 3λ on the vector function S:

1− α
rg

S1 −
1− µα
r

1∫
0

1
ω′1

∂

∂ν

(S′1 − S1

u′1 − u1

)
dν −

1∫
0

1
ω′2

∂

∂ν

( S′3
u′2 − u1

)
dν = 0,

1− β
g

S3 − (1− µβ)

1∫
0

1
ω′2

∂

∂ν

(S′3 − S3

u′1 − u1

)
dν −

1∫
0

1
ω′1

∂

∂ν

( S′1
u′1 − u2

)
dν = 0.

(19)

It is easy to verify that the functions

li1 = rγi
2(u1 − ki)−1, li3 = (1− γi

1)(u2 − ki)−1 (20)

satisfy system (19). Therefore, the desired functions S1 and S2 can be written as

S1 = S∗1 + r
4∑

i=1

Ciγ
i
2

u1 − ki
, S3 = S∗3 +

4∑
i=1

Ci(1− γi
1)

u2 − ki
.

By choosing the quantities Ci independent of λ, we make S∗1 and S∗3 vanish for λ = 0 and λ = 1. After simple
transformations, we obtain the following system of singular integral equations for the functions S̃1(u1) = S∗1 (λ) and
S̃3(u2) = S∗3 (λ):

Re (χ+(u1))
rg

S̃1 −
1 + gµχ2(u1)

r

u11∫
u10

( 1
ω′1

)
u′

1

S̃′1 du
′
1

u′1 − u1
+

u21∫
u20

( 1
ω′2

)
u′

2

S̃′3 du
′
2

u′2 − u1
= 0,

Re (χ+(u2))
g

S̃3 +

u11∫
u10

( 1
ω′1

)
u′

1

S̃′1 du
′
1

u′1 − u2
+ (1 + µgχ1(u2))

u21∫
u20

( 1
ω′2

)
u′

2

S̃′3 du
′
2

u′2 − u2
= 0.

(21)

The singular integral equations (21) contain both a characteristic part and a first-order Fredholm operator, which
considerably complicates their solution.
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If Eqs. (21) has only a trivial solution, the system of eigenfunctionals F iλ and F i (i = 1, 2, 3, 4) is complete.
Indeed, from the relations (F i,S) = 0 we obtain a linear homogeneous system of four equations ΓC = 0 for Ci.
The components of the matrix Γ are given by the formula Γij = (F i, lj), where the vector function lj has the
components lj1 and lj3 given by formula (20); lj2 = ω−1

1 lj1λ and lj4 = ω−1
2 lj3λ. For i 6= j,

Γij = − r

g(ki − kj)

(
γj
2(1− γi

2)(γ
i
1 − γ

j
1) + γi

1(1− γ
j
1)(γ

i
2 − γ

j
2)

)
= 0

since, by virtue of the characteristic equation (12), the quantities γi
1 and γi

2 are linked by the relation 1 − γi
1 − γi

2

+ µγi
1γ

i
2 = 0. The diagonal components of the matrix Γ are different from zero:

Γii =
rγi

2(1− γi
2)

g(µγi
2 − 1)

χ′(ki) 6= 0.

Thus, the problem of the hyperbolicity of the two-layer rotational shallow-water equations (5) reduces to an analysis
of the unique solvability of the singular integral equations (21).

3. Case of a Weak Density Discontinuity. We consider the situation where fluid density stratification
is nearly absent ρ1 → ρ2 (r → 1 and µ → 0). Passage to the limit in Eqs. (5) yields a simpler model for a
homogeneous fluid with a slip of the layers. In this case, the characteristic equation has the form

χ(k) = 1− g
1∫

0

H1 dλ

(u1 − k)2
− g

1∫
0

H2 dλ

(u2 − k)2
= 0. (22)

Equation (22) has four real roots if the condition χ(k∗) > 0 [k∗ = (u11 + u20)/2] or its equivalent condition 5 in
(15) is satisfied. The system of characteristic relations (18) reduces to the Riemann integral invariants

Rj = uj − g
1∫

0

H ′
1 dν

u′1 − uj
− g

1∫
0

H ′
2 dν

u′2 − uj
, ωj = ujλH

−1
j (j = 1, 2),

ri = ki − g
1∫

0

H ′
1 dν

u′1 − ki
− g

1∫
0

H ′
2 dν

u′2 − ki
(i = 1, 2, 3, 4)

conserved on the characteristics

(∂t + uj∂x)Rj = 0, (∂t + uj∂x)ωj = 0, (∂t + ki∂x)ri = 0.

In addition, system (21) for µ = 0 is represented as a homogeneous singular integral equation, adjoint to the
characteristic equation, on the discontinuous contours [12]

A(ξ)S(ξ)− 1
πi

∫
L

B(ξ′)S(ξ′) dξ′

ξ′ − ξ
= 0. (23)

Here A = Re (χ+), B = Im(χ+) and S(ξ) = S̃1 if ξ ∈ [u10, u11], and S(ξ) = S̃3 if ξ ∈ [u20, u21], L is a discontinuous
line consisting of the segments [u10, u11] and [u20, u21], and χ+ are the limiting values of the complex function

χ(z) = 1 + g

2∑
j=1

( 1
ωj1(uj1 − z)

− 1
ωj0(uj0 − z)

−
uj1∫

uj0

( 1
ω′j

)
u′

j

du′j
u′j − z

)
from the upper half plane on the real axis.

The introduction the function

Ψ(z) =
1

2πi

∫
L

B(ξ)S(ξ) dξ
ξ − z

reduces the solution of Eq. (23) to the solution of the homogeneous conjugation problem (Riemann problem)

Ψ+(z) = G(z)Ψ−(z), G(z) = χ+(z)/χ−(z) (24)

for determining the analytic complex function Ψ(z) from the boundary conditions on the discontinuous line L.
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If the index of the function χ is equal to zero, the conjugation problem (24) has only a trivial solution in the
class of functions vanishing at infinity [12]. If condition 5 in (15) and conditions (16) are satisfied, the index of the
conjugation problem is equal to zero, and, hence, S ≡ 0. Thus, the completeness of the system of eigenfunctionals
is proved and the hyperbolicity of the model (5) for r = 1 is established.

4. Case of a Strong Density Discontinuity. Another limiting case is strong stratification, i.e., the
density in the lower layer ρ1 is considerably higher than the density in the upper layer ρ2, whose thickness is small.
Setting r = 0 in Eqs. (5), we obtain a simplified model for a two-layer fluid. Obviously, the equations of motion
split: in each of the layers, the fluid flow is described by a single-layer model of rotational shallow water [11]. In
this case, the interface between the fluids, specified by the equation y = h1(t, x), is formed only under the influence
of the heavy fluid in the lower layer. If the functions u1 and H1 are found from the first two equations of system (5)
for r = 0, then the functions u2 and H2 are obtained by solving a similar problem with the right side corresponding
to the case where the “bottom” [y = h1(t, x)] for the upper layer changes under the specified law. In [11], it
was shown that the single-layer rotational shallow-water equations reduce to Riemann invariants and the model is
generalized-hyperbolic for flows with a monotonic velocity profile over the depth if the conditions

∆ arg
χ+(u)
χ−(u)

= 0, χ± 6= 0

are satisfied for the limiting values of the analytic function χ(z) =

1∫
0

(u′ − z)−2H ′ dν on the segment

[u(t, x, 0), u(t, x, 1)].
Conclusions. The propagation of long-wave perturbations in a two-layer stratified rotational fluid was

studied theoretically. The velocities of perturbation propagation were determined and the conditions of the absence
of complex characteristic roots, necessary for the hyperbolicity of the model, were formulated. The characteristic
form of the integrodifferential equations was calculated. The problem of the equivalence of the initial system and
the characteristic form was reduced to studying the solvability of singular integral equations. In the limiting cases
of strong and weak stratifications, the generalized hyperbolicity of the models was established and the existence of
Riemann integral invariants was shown.
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